Fundamentals of Computing and Programming

Mid Term Examination. Maximum score 40, Total marks 43. Time Limit 2 hrs.

$$
\text { September 21, } 2023
$$

1. Answer each of these briefly as instructed:
(a) What does the following print:
printf("\%d \%c", 'e' - 'a', 'a'+ 4);
// prints an integer and a character
Explain your answer in one sentence.
(b) Draw a picture and show using arrow for pointer the relationship between the array a[] and the variables p and q after the last statement:
```
int a[10]={0,1,2,3,4};
int *p, *q; // p and q are integer pointers
p = &a[3];
q = p-3;
```

(c) What does the following code print:

```
char name[20]="praggnananda";
printf("%s",name+6);
```

(d) What does the following code print:

```
char name[20]="praggnananda";
scanf("%s",name+6); // assume the input was "chess"
printf("%s",name);
```


2. Downify

The code below converts given upper case character value to lower case and returns the converted lower case character:

```
char downify(char a){
    if ( __C__ ) { // check: if a is an upper case character
                // then compute the lower case character
        __S__ // and return it
    }
    return a ; // otherwise just return the given character
}
```

3. Array Read/Print

Write a main() function to do the following:
-Define an array named a of 10 integers.
-Read five integers into the array.
-After all integers are read, then print all the read integers from the array.

4. Array Sum

Write a function int sum(int a[], int n);
the first parameter a[] is an array, the second parameters says how many integers are in the array. The function simply finds the sum of all the n elements of a[] and returns that value.

5. Flying birds

Write a function called $f l y()$. It has one parameter named s which is a string. [5] - It returns 0 or 1 or -1 as defined below:

- It returns 1 if the string is "sparrow" or "mynah"
- It returns 0 if the string is "penguin".
- It returns - 1 if it is none of the above

Note: You can use the following C standard library function to compare two strings: int strcmp(char s1[], char s2[]);
It compares the strings in the two arrays s1 and s2 and returns 0 only if they are identical, for example $\operatorname{strcmp}(\mathrm{a}$, "hello") will return 0 if the string in a is equal to "hello". $\operatorname{strcmp}(\mathrm{a}$, "bye"); will return a non-zero value if a has he string "hello".

6. Checking digits:

Write a function $\operatorname{kap}()$. It takes one integer parameter n. If n has in its units place: 4,9 or 5 then it prints "It is a kap" else it prints "It is not a kap".
Constraint: You must use a switch-case and NOT an if-else.
7. Searching for TC numbers
$[2+8=10]$
A TC number is one which can be written as the sum of two-cubes in at least two different ways (with positive integers). For example $152=3^{3}+5^{3}$ is not a TC number because there is no other way to write it as a sum of two cubes. On the other hand, $1729=12^{3}+1^{3}$ and $1729=10^{3}+9^{3}$, so 1729 is a TC number. This problem shows how to find if a number is a TC number.
(a) Write a function with prototype:
int checkprod(int a, int b, int $t)$;
It tests if $a^{3}+b^{3}$ equals t. If yes, it returns 1 , if not it returns 0 . Remember that C does not have an exponentiation operator, just repeated multiplies is the way you can do it.
(b) Write another function with prototype:
int checktc (int n);
it checks if n is a TC number and returns 1 or 0 to say it is or it is not a TC number.
To do hat it tests every possible (i, j) integer pairs where $i \leq j$. Here is how it works:

- Maintain a variable count, see below how it is used.
- Loop over each value of i from 1 to $n-1$
- \quad For a given i loop over each value of j from i to $n-1$
- \quad Call checkprod() with arguments i, j and n to check if $i^{3}+j^{3}$ equals n
- If it is then increment count;
- After checking every such i and j pair and coming out of the two loops, see if count is greater than 1 , if it is, then the function returns 1 else it returns 0 .

